"Integrated" Simulation:

What is it, and how is it useful?

Kevin F. Hulme Senior Research Associate

August 16, 2011 3:00 pm

Funded Research Project

Addressing Design and Human Factors Challenges in Cyber-Transportation Systems

P.I.: Dr. Chunming Qiao

National Science Foundation: Cyber-Physical Systems

September, 2010 - present

Impetus:

Design and evaluate novel CTS applications related to both traffic safety and traffic operations while taking human factors into consideration

Research Team

Dr. Chunming Qiao (Principal Investigator)

Department of Computer Science

Specialty: Network Simulation

Dr. Adel Sadek

Department of Civil Engineering

Specialty: Traffic Simulation

Dr. Changxu Wu

Department of Industrial Engineering

Specialty: Human Factors

Dr. Kevin Hulme

NYSCEDII

Specialty: Driving Simulation

Presentation Overview

- U.S. Transportation Problems
- "Standalone" Simulation
- Integrated Simulation
- Experimental Design
- Preliminary (TS-DS) Integration
- App. #1 Emissions Model
 - Experimental Setup
 - Road Course
 - Results
- Extension #1 Multiple Simulators
- Summary
- Ongoing Technical Challenges and Future Work
- Q/A

Motivation:: U.S. Transportation Problems

Components of "Standalone" Simulation

Two types of transportation-based simulators: Traffic (TS) and Driving (DS)

- DS:
 - Hardware: displays, vehicle cabin, pilot controls, motion platform
 - Software: DriveSafety, STISIM, Virtual Driver, in-house
 - Deficiency: <u>traffic is non-intelligent</u>, and does not respond to the <u>actions of human driver</u>, in real-time
- TS:
 - Simulate the movement of individual driver-vehicle units based on carfollowing and lane-changing theories
 - Software: TRANSIMS, Paramics, VISSIM, AIMSUN
 - Deficiency: models lack the level of detail required for safety evaluations: require models that reflect errors in drivers' perception and decision-making

Limitations of "Standalone" Simulation

Limitations:

- <u>TS</u>: Behavioral realism (car-following, lane-changing theories)
- <u>DS</u>: Network realism (accompanying traffic is pre-programmed)

Much potential for integrating these 2 disparate environments:

- To analyze the behavior of special groups within the driver population (e.g. elderly drivers or teenage drivers)
- Human Factors analyses to analyze "driver workload"
- To assess how driver behavior and habits affect fuel-consumption and emissions (i.e. "Eco-driving")
- Way into the future... "Intellidrive"

Broader Impacts to Integrating Simulators

- Wide range of potential applications:
 - Civilian road vehicle applications
 - Military training, strategizing, and education
 - Aircraft, marine vessels, battlefield warfare (e.g., tanks)
 - Transportation safety, and infrastructure design
 - Human factors and driver/pilot behavior
- Extend TS-DS integration to include:
 - Capacity for linked simulators across the Internet
 - Network Simulation (NS) as a third integration component

"The whole is greater than the sum of its parts"

Experimental Design (DS)

Hardware Infrastructure:

- Six D.O.F. motion platform
- 2-seater cabin
- On-board (reconfigurable) controls
- 4-screen VR environment
- 2.1 channel audio system

Experimental Design (TS)

PARAMICS (v6.0) was selected Consists of the following modules:

- (1) Modeler
- (2) Processor
- (3) Analyzer
- (4) Programmer (add-on module)

- Justification for using Paramics:
 - Programmer Application Programmer Interface (API)
 - Retrieve output values and assign input parameters
 - Augment the core simulation with new functions/driver behavior
 - Critical for integrating the TS and DS

{Alternate TS Environment – TRANSIMS}

Microscopic vehicle behavior (*vehicles - colored spheres*) mapped onto a Google Maps terrain

Preliminary Integration (TS-DS) overview

- Step 1: Driver Input (steering, gas, and brake pedals)
- Step 2: DS analysis processing (e.g., vehicle dynamics) State outputs result (e.g., position, velocity, etc.)
- Step 3: Render motion and audio outputs
- Feed outputs to TS

Preliminary Integration (TS-DS) overview

- "Subject Vehicle" (SV) speed, position, orientation are overridden by the actions of the live driver
- SV is surrounded by other traffic vehicles whose behaviors are dictated by the TS
- Background traffic now responds in real-time to the actions of the live driver, a feature often lacking in standalone driving simulator implementations

Preliminary Integration (TS-DS) overview

Graphics rendered:

- position/orientation of the human driven vehicle
- position/orientation of the traffic vehicles
- roadway geometry, traffic signals

Application: Emissions Model

Once constructed, how can an Integrated simulator be useful?

- Comprehensive Modal Emissions Model (CMEM)
- Developed: UC Riverside, 2001
- <u>Inputs</u>: second-by-second velocity profile for a vehicle
- Outputs: predict highly timeresolved fuel consumption and vehicle emissions rates

Vehicle Property	Value
Mass (lbs)	3937.50
Coast down power (hp)	17.99
Max Torque (ft-lb)	193.78
Engine speed (rpm)	2953
Engine speed at max power (rpm)	4603
Engine speed at Idle (rpm)	850.0
Engine displacement (L)	3.42
Number of cylinders	4
Engine/vehicle speed (rpm/mph)	33.56
Number of gears	4

Experimental Setup (Summer, 2010 study)

Eco-driving:

- Subtle changes to driving habits
- Reduce fuel consumption/emissions (by up to 15%)

Practices:

- Avoiding rapid acceleration or braking
- Driving at speed limit / constant speed

Study Details:

- N=16; avg. age: 27.7; avg. yrs. exp.: 7.5
- 2 drives: i) low, ii) moderate congestion

Objectives:

- Observe performance differences among the different drivers
- Observe impact of factors (driving experience, congestion) on metrics

Road Course (modeled after Millersport Highway)

"Low congestion" condition

- Driver ID, years driving
- Excursion time (sec)
- Maximum and Average speeds (mph)
- Fuel consumption rate (g/mile)
- Tailpipe emissions rate (CO₂), (g/mile)

Facts:

Every liter of gasoline that is burned produces about 2.4 kg of CO2

Responsible > 60% of the enhanced greenhouse effect (climate change)

Driver	Time	V _{max}	$\mathbf{V}_{\mathrm{avg}}$	Fuel use	T _{CO2}
1-1	160	48.3	16.4	406.7	1129.9
2-7	160	43.4	15.8	318.5	997.9
3-15	215	37.3	11.7	355.6	1075.4
4-0	162	49.5	16.3	460.8	1234.4
5-2	215	43.6	12.4	329.7	1015.2
6-3	163	46.0	17.1	395.9	1010.1
7-10	169	42.1	15.3	356.7	1074.8
8-6	162	43.0	16.5	464.3	1259.0
9-4	172	35.4	14.5	245.0	761.6
10-1	216	37.3	11.6	320.5	1004.6
11-20	213	33.5	11.5	293.7	919.4
12-16	161	77.5	17.9	353.7	902.0
13-6	169	41.4	15.2	334.7	971.8
14-24	161	61.8	21.2	357.0	947.8
15-5	162	40.2	16.2	294.7	906.6
16-0	216	30.7	13.7	221.5	694.7
Mean:	179.7	44.4	15.2	344.3	994.1
STD:	24.7	11.4	2.6	66.6	147.9

"Moderate congestion" condition

Due to the increased road traffic:

- The mean duration increased by 25% (179.7 to 239.6 seconds)
- Mean max/avg. speeds decreased (by 8.2%, and 25.9%, respectively)
- Mean fuel use (rate) increased from 344.3 to 380.6 grams/mile; (9.5%)
- Mean T-CO₂ rate emissions increased from 994.1 to 1131.5 grams/mile; (12.1%)

					_
Driver	Time	V _{max}	V _{avg}	Fuel use	T _{CO2}
1-1	230	43.2	11.2	439.4	1285.8
2-7	231	40.4	10.7	369.1	1156.9
3-15	286	36.2	8.5	351.8	1031.8
4-0	244	50.1	11.7	517.3	1383.8
5-2	252	42.8	11.0	338.6	1042.8
6-3	230	51.9	14.4	321.0	902.6
7-10	226	38.6	11.0	479.2	1447.9
8-6	286	43.0	8.8	549.9	1649.4
9-4	234	39.5	10.9	320.2	1004.4
10-1	231	40.0	11.1	396.9	1194.0
11-20	232	35.4	11.7	272.8	855.1
12-16	228	47.5	14.2	308.3	912.8
13-6	233	39.3	11.4	373.6	1131.9
14-24	231	44.1	11.4	449.7	1263.0
15-5	232	36.3	10.7	375.6	1132.9
16-0	229	24.2	11.1	226.6	709.4
Mean:	239.6	40.8	11.2	380.6	1131.5
STD:	19.1	6.5	1.4	87.9	240.3

Interesting "human factors" observation:

Trend: A (slight) inverse relationship between both fuel usage and tailpipe emissions versus driver experience

- Although the data has a low correlation coefficient, note the <u>negative values</u> for slope.
- An integrated TS-DS simulator incorporated with a numerical emissions model can be useful for examining these (and other) driver behaviors

Results (Fuel Consumption)

Results (Tailpipe emissions)

Extension #1 – Multiple Driving Simulators

Simultaneous use of multiple driving simulators:

- allow for various human-in-the-loop analyses
- direct vehicle-to-vehicle (V2V) communication and interaction
- demonstrate impact of driver decision-making "down the chain"

Concept is frequently used in multi-player P2P (online) video gaming

Link multiple driving simulators across geographic distances

Use TCP/UDP (server/client) to update vehicle position(s) and orientation(s) to each simulator

Each linked simulator <u>need not</u> necessarily require motion hardware...

{recall: Driving Simulator Spectrum}

Players in networked environment could use ANY fidelity of driving simulator

Extension #1 – Multiple Driving Simulators

Summary

Prototype transportation simulation modeling framework:

- TS-DS integration override "subject vehicle" within TS by actions of a live human driver
- Implement CMEM software for estimating fuel consumption and vehicle emissions
- Pilot study: 16 human subjects of varying gender, age, and driving experience
- 3/4 mile road course: "low" and "slight" congestion
- Data trends: an increase in driving duration implies expected decreases in maximum/average speed, increases in fuel use and tailpipe emissions
- TS-DS Integration useful for examining "human factors"
- Strive for global effort to make driving more "Eco-friendly" practice

Ongoing Technical Challenges

- Location of Graphics rendering is cause for debate
 - as part of the TS, or as part of the DS?
 - use off-the-shelf software, or develop an in-house graphics engine?
 - multiple-screen considerations
 - must consider ease of integrating with motion platform
- Require smoother behavior of vehicles in the integrated simulator
 - interpolation techniques?
- Need to overcome "speed irregularities" for the SV override
 - due to varying vehicle dynamics predictions in the TS and the DS
 - may be due to TS inability to override vehicle behavior in intersections
- SV heading/yaw control needs improvement
 - no true "steering" in current integration just lane changing capability

Ongoing and Future Work

Expansion of TS-DS architecture to other domains:

- Integration that includes Network Simulation (NS)
 - e.g., Future vehicles send relevant warning messages to the driver
- Create a network of motion simulators
 - e.g., Multiple remote clients within the same virtual environment
- Transportation Safety Research
 - e.g., Communicate with other vehicles & infrastructure (IntelliDrive)
- Analysis of Human Factors and Driver Behavior
 - e.g., Rely on human response to partially (or fully?) relinquish driver control in the vicinity of intersections

Questions?

